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Abstract

One mandate of the US Environmental Protection Agency is to use its legal author-
ity to promote and ensure environmental justice. This paper investigates to what
extent this has been the case in the recent past. Our analysis draws on a comprehen-
sive dataset that links auditing information from all environmentally relevant plants
across the USA over 2000 - 2018 to county-level demographic and ethnic yearly in-
formation. We study whether changes in the racial composition of US counties are
followed by adjustments in the volume of air quality inspections to polluting plants.
Using a staggered difference-in-differences design, we find robust evidence that the
share of inspected plants within a county decreases following an increase in the share
of the Nonwhite population. This coincides with higher air pollution levels and an
increased rate of nonattainment designations.

JEL Classification: Q50, Q52, Q53, Q58.
Keywords: Environmental auditing; Environmental Protection Agency; air pollu-
tion; environmental justice; staggered difference-in-differences.

Around the world, Environmental Protection Agencies (EPAs) are central governmen-

tal institutions in charge of controlling environmental damages from industrial activity

and keeping firms from breaching legal pollution levels. In the United States, federal

laws, such as the Clean Air Act (CAA), provide the constitutional framework for these

objectives. A prolific literature agrees on the CAA’s crucial contribution to better air

quality in the US over the last decades. Blundell et al. (2020), for instance, estimate that

the CAA incurred a cost of approximately $831 billion between 1970 and 1990. How-

ever, its benefits in the form of prevented air pollution damages exceed this amount and

accumulate to over $35 trillion. With the growing academic interest in environmental
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justice, a recent stream of literature additionally investigates the impact of the CAA on

discrepancies in pollution exposure between various strata of society, leading to mixed

results. Most recently, Currie et al. (2023) show evidence consistent with the fact that

the CAA contributed to an ongoing racial convergence in ambient air pollution exposure

between African-American and White communities in the US. They argue that higher

pollution levels in African-American neighborhoods led to increased scrutiny, which re-

duced the racial pollution exposure gap by over 60 percent since 2000. However, Colmer

et al. (2020) argue that despite progress in reducing absolute gaps, relative differences in

exposure prevail.

This paper provides new insights into the impact of the CAA on air pollution and its

role in mitigating environmental inequalities. More precisely, we disentangle what role a

county’s racial composition plays in the application and volume of inspections and nonat-

tainment designations. We find that the EPA inspects a lower share of environmentally

important plants in counties that experience a positive jump in the share of non-white

population. At the same time, Nonwhite counties are more often in nonattainment, sur-

pass federal pollution thresholds, and have higher particulate matter concentration than

their white counterparts.

Furthermore, we are able to show that the share of inspected plants follows demo-

graphic changes. Making use of changes in counties’ racial composition between two

periods, we estimate a staggered difference-in-differences model with dynamic treatment

effects as laid out in Sun and Abraham (2020).1 Our results indicate that an increase

in the share of the Nonwhite population leads to a significantly lower share of inspected

plants in the periods after the population change. This change in inspection behavior

persists in counties without ground monitors, while counties with monitors return to for-

mer inspection levels after two periods. Changes in pollution levels cannot explain the

change in inspection behavior.

Using a spatial Durbin model to account for geographic dependencies of pollution, we

underline that these differences matter, as the overall design of environmental scrutiny

effectively reduces particulate matter (PM2.5) concentrations. Assigning the ”nonattain-

ment” status to a county, for instance, lowers PM2.5 levels by 2.5 percentage points in

the upcoming year. Similarly, increasing the share of inspected plants by ten percentage

points leads to 0.05% lower PM2.5 levels. However, we also highlight the importance of

geographical spillovers, which appear to reduce these estimated effect sizes. Additionally,

1Allowing for groups to switch to and from treated to not treated, as discussed in De Chaisemartin
and d’Haultfoeuille (2020), leads to similar outcomes.
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we notice that the effect size depends on whether PM2.5 is measured by ground monitors

or satellites, with the latter displaying a lower estimated impact.

This paper adds to the literature in four ways. First, to our knowledge, we construct

the most comprehensive dataset on environmental scrutiny and air pollution exposure

currently in existence. Using auditing information from 251,829 plants across the con-

tiguous USA and combining this data with ground monitor and high resolution remotely

sensed air pollution information (Hammer et al., 2020), we compile a county-year panel

dataset spanning from 2000 - 2018. By doing so, we overcome severe data limitations

that previous studies have faced. Hanna and Oliva (2010), for example, used a panel of

only 17,200 firms combined with self-reported pollution data to estimate the impact of

inspections. Liu and Yang (2020), on the other hand, relied on a total of 8,755 major

manufacturing facilities in the US to estimate the role of the high-priority violator status

on a plant’s emissions.

Second, our paper makes an important contribution to the environmental justice lit-

erature. Previous studies, using only regions where ground level monitors exist, show

that the regulations introduced within the CAA scope led to a convergence in racial air

pollution exposure (Currie et al., 2023). Our analysis expands to consider also coun-

ties without ground-level monitors and finds robust evidence that the share of inspected

plants decreases following an increase in the share of Nonwhite population within a county.

These results appear consistent with a discrimination in the extent of safeguarding the

environment against regions where the share of minorities is on the rise.

Our findings cary important implications for regulatory policies aimed at improving

air quality and reducing racial disparities in environmental protection. First and most

importantly, our study sheds light on the issue of racial discrimination in the implementa-

tion of the Clean Air Act, calling for a revision of the environmental auditing mechanism.

Policymakers should ensure that the auditing mechanism is impartial and equitable to

avoid discriminatory practices in the enforcement of environmental regulations. Second,

our study highlights the importance of using satellite measurements to determine inspec-

tion probabilities. As more than two-thirds of US counties have no ground-level monitors,

a racially just environmental auditing system should aim to be inclusive with its pollution

measurements.

I. The Environmental Regulatory Framework in the US

The US EPA is a federal agency guided by environmental legislation applied at the na-

tional level. However, a large part of the regulatory enforcement process is conducted
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by regional and a total of ten state-level EPAs.2 Regional EPAs conduct inspections,

issue sanctions, and assist states with major violation cases. Regions and states can take

different approaches to implementing enforcement programs. Hence, the interpretation

of federal policy and preferences for enforcement can differ across regions.

When states or localities have primary authority, they are still required to regularly

provide key activity data to EPA regional and federal offices. EPA offices regularly review

state operations. EPA actions most often occur when and where more local enforcement is

perceived as insufficient or when and where potential environmental impacts from specific

violations are unusually large.

Self-Reporting: Self-reported pollution data are the primary source of compliance mon-

itoring information. In most cases, facilities self-report pollution snapshots or longer-term

pollution summary measures at the pollutant-point source level. Regulator inspections

help confirm the accuracy of self-reported data.

Inspections: All plants (compliant or not) can be inspected regularly. The frequency

of inspections depends on (i) baseline differences across states and regions in enforcement

budgets and priorities, (ii) the size of the plant and (iii) whether a plant is located in

a NAAQS non-attainment area.3 Evaluations can vary in scope and scale across facili-

ties, industries, statutes, states, and time. Low-intensity inspections may involve visual

inspections of emissions and abatement equipment. Medium-intensity inspections may

involve reviews of facility operations, maintenance, sampling, and reporting procedures.

High-intensity inspections may typically involve extensive sampling by the regulator.

Inspections are conducted at specific facilities “for cause” or, more commonly, for

administrative reasons based on “neutral selection.” For-cause inspections are based on

compliance history, citizen complaints, anonymous employee complaints, or facility char-

acteristics correlated with frequent violations or significant damages. Neutral selection

inspections are based on time since the last inspection and regulator cost factors, such as

geographic proximity to other facilities scheduled to be inspected. Monitoring guidelines

set inspection frequency targets for facilities, but these targets are generally not legally

binding. Thus, neither for cause nor neutral selection are purely random inspections

but are based on observable criteria. The agency also uses environmental justice as a

targeting consideration, looking at the vulnerability of populations near plants. Finally,

2In the US, there are ten regional EPA assigned to specific geographic regions, see https://www.epa.

gov/aboutepa/regional-and-geographic-offices.
3Non-attainment areas were required to have plans to return to attainment, which could lead to

increased levels of scrutiny for plants in these areas.
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facilities are usually notified by authorities in advance of impending inspections, so on-site

inspections are often not a surprise to facilities.

Selection of Plants: Based on previous empirical work, environmental regulators take

into consideration the benefits and costs of enforcement activities. A plant with higher

emissions and damages can be expected to have a higher inspection probability as well

as higher penalty magnitudes. Regarding administrative costs, states with higher-paid

employees conduct lower-intensity inspections on average. Facilities recently inspected

are less likely to be immediately inspected again. Regarding compliance costs, the EPA

and states direct fewer monitoring and enforcement actions toward facilities that are

important local employers or that have especially high probabilities of the shutdown.

Facilities’ compliance history is usually an important determinant of monitoring and

enforcement activity (Kleit et al. (1998); Oljaca et al. (1998); Eckert and Eckert (2010))

with the expectation that past violators are more likely to violate again.

Regulator actions that have no basis in direct benefit and cost comparisons are also

readily observed. CAA inspection probabilities are related to congressional represen-

tatives’ voting scores and committee memberships (Helland (1998a); Innes and Mitra

(2011)). Highly corrupt states pursue more lax environmental oversight (Grooms (2015)).

Inspection probabilities and enforcement probabilities are closely related to community

characteristics such as political activism, income, education, voter turnout, and environ-

mental group membership and appear to be especially influential for state-level interven-

tions (Earnhart (2004a,b); Helland (1998b)).

Regular Violator Status: If a violation is discovered either through an inspection or

a self-report, the plant will enter “violator” status. As a violator, there are additional

inspections. Plants can accumulate multiple violations within the violator status and only

return to compliance once those violations have been resolved. The cost to the plant of

being a violator, therefore, comes not only from the investment cost required to resolve

outstanding violations but also from an increased level of regulatory oversight.

High Priority Violator Status: If particularly damaging or repeated violations occur –

a plant becomes a “High Priority Violator”. This can occur through substantial testing or

chronic violations. After a plant becomes HPV, it begins intense oversight that includes

more frequent inspections, higher fines, and explicit deadlines to resolve any outstanding

violations. A plant can only exit HPV status after resolving all outstanding violations,

regardless of whether those violations would independently elevate the plant to HPV

status.
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Fines: When a violation is detected, the plant can be informally sanctioned through

warning letters, telephone calls, and notices of violation. These actions are most fre-

quently carried out by the lowest-level authority. The next stage is formal sanctions,

which are usually administrative orders or fines.

II. Data

A. Data Set Generation

Matching geographic coordinates, we merge six publicly available datasets to construct

a county-year panel that encompasses air quality, climate, ethnic and demographic com-

position, as well as environmental scrutiny information for 251,829 facilities located in

3,014 counties spanning the contiguous US. To the best of our knowledge, this compiled

dataset constitutes the most extensive aggregation of information within an environmen-

tal scrutiny context to date.

As an initial step, we make use of data sourced from the EPA’s Integrated Compli-

ance Information System for Air (ICIS-AIR)4 which gathers information on the current

compliance status of stationary air pollution sources, such as electric power plants, steel

mills, factories, and universities. Additionally, ICIS-AIR contains data on historic in-

spection dates and inspection outcomes, ranging from compliant to federally reported or

high-priority violators. The ICIS-AIR database has been made available in 2014 when

it replaced the Air Facility System (AFS) as the database of record for EPA-regulated

air emissions facilities. As inspections can occur at multiple levels in the American envi-

ronmental regulatory framework, this data is assembled by the EPA through systematic

reporting by state and local air pollution authorities. ICIS-AIR also includes data on a

plant’s historical violation status (e.g., compliant, regular violator, or high-priority viola-

tor) and the costs incurred by the plant - both fines and investments combined - to return

to compliance after a violation.

The ICIS-AIR database is part of the EPA’s larger Environfacts and IDEA (Integrated

Data for Enforcement Analysis) database, which can be accessed by the Enforcement and

Compliance History Online (ECHO) website. The IDEA system was first introduced in

1990. It is maintained by the EPA and contains compliance and enforcement data for

different tracking systems on a monthly basis. Both datasets have a unique identifier

based on which we perform the merge (the Facility Registry Service - FRS)5. The merged

4https://echo.epa.gov/files/echodownloads/ICIS-AIR_downloads.zip
5https://catalog.data.gov/dataset/facility-registry-service-frs

6

https://echo.epa.gov/files/echodownloads/ICIS-AIR_downloads.zip
https://catalog.data.gov/dataset/facility-registry-service-frs


dataset includes then information on the exact geographic location of each plant, as

well as details on the plant’s operating industry. We then collapse the plant-level into

a yearly panel at the county-level, containing information on environmental inspections

and compliance spanning from 2000 until 2018.

As a third step, we combine the county-level yearly panel with information about

average yearly fine particulate matter (PM2.5) concentrations. We rely on two sources for

the air pollution data. First, we retrieve remote-sensed data from Hammer et al. (2020).6

who Second, we download the ground-level monitor data provided by the Air Quality

System (AQS) database managed by the EPA, which has PM2.5 data from 1,989 outdoor

ground monitors across the United States.7 We aggregate both datasets to the yearly

county level to match our inspection panel data. Moreover, we merge to the panel key

climate data, such as wind speed, precipitation, and temperature from NASA’s MODIS

satellite program.

Finally, county-level demographics and ethnic composition data are added to the pre-

viously generated panel. Two distinct data sets are used for this scope. First, we use

the UN-adjusted county-level population count data provided by WorldPop (2020). This

dataset provides information on the US population density on a 100x100m scale, taking

census and satellite imagery data into account. Additionally, we use annual census data

on county-level racial and ethnic composition, as well as income from the decennial census

100-Count survey, to finalize our dataset. The final panel consists of yearly observations

for a total of 3,014 US counties from 2000 - 2018.

B. Stylized Facts

This section provides a short description of the main patterns observed in the data. Our

main focus is on the relationship between a county’s air pollution concentrations and

the changes in its racial composition on the one hand, and the environmental auditing

activity led within its boundaries on the other hand.

Figure 1 illustrates the average yearly PM2.5 concentrations over 2000 - 2017 of all

contiguous US counties where at least one environmentally relevant plant is located. Ad-

ditionally, the placement of ground-level monitors that measure PM2.5 is marked with

yellow dots. We make three main observations. First, there appears to be substantial

geographic clustering in air pollution across the US, whereby the eastern parts of the US

6The dataset available from Hammer et al. (2020) has a geographical resolution of 0.01x0.01◦ at a
monthly temporal frequency. We collapse this dataset at a yearly county-level.

7https://aqs.epa.gov/aqsweb/airdata/download_files.html

7

https://aqs.epa.gov/aqsweb/airdata/download_files.html


15 - 20
10 - 15
5 - 10
0 - 5
Monitor

PM2.5 (µg m-3)

Figure 1 – Average PM2.5 concentrations and ground-level monitor placement.

Notes: This figure maps the average population-weighted PM2.5 concentration in all 3,014 US counties in our sample period
from 2000 to 2018. A darker red color indicates higher average PM2.5 concentrations. Ground-level PM2.5 monitors that
were at some point active over this sample period, are indicated by yellow dots.

and Southern California experienced on average lowest air quality. Second, the place-

ment of ground-level monitors appears to follow the pollution clustering pattern, being

predominantly located in areas that have higher pollution levels. Third, a large share of

all US counties have no ground-level monitors, despite average PM2.5 concentration levels

being above the WHO recommended threshold of 5µg/m3.

We further explore these qualitative patterns in Table 1, which presents summary

statistics of key variables at the county level, averaged over time. Column 1 provides

mean values across all counties. We make the following observations with respect to the

whole sample statistics. PM2.5 concentration levels measured by ground-level monitors

are higher than remote-sensed PM2.5 concentrations, suggesting that monitors are strate-

gically placed where air pollution is higher. Abound 20% of all plants have been inspected

at least once during the time horizon that our data spans. Across counties, the population

is predominantly white, with an average share of 86%.

In the remaining columns, Table 1 distinguishes counties along two dimensions. The

first dimension groups counties according to the racial demographic changes they have

experienced over the time horizon 2000 - 2018. Namely, we differentiate between counties

that have experienced a sudden increase in their share of nonwhite population – as defined

by a 0.5 or more percentage point increase from one year to the next – and those that

did not. We henceforth refer to these two groups of counties as Jump and No jump,
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Table 1 – County-level summary statistics.

All No jump Jump No jump - Jump

W/

monitor

W/o

monitor
P-val.
diff.

W/

monitor

W/o

monitor
P-val.
diff.

P-val.
diff. w/

monitors

P-val.
diff. w/o

monitors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PM2.5

Ground monitors 9.79 9.86 - - 9.70 - - 0.29 -
Remote sensed 8.54 8.96 8.58 0.00 9.04 7.99 0.00 0.60 0.00
Above WHO 0.94 0.97 0.97 0.61 0.91 0.88 0.09 0.00 0.00

Scrutiny

Share inspected plants 0.20 0.23 0.20 0.00 0.18 0.17 0.43 0.00 0.00
N inspected plants 0.19 0.40 0.11 0.00 0.48 0.09 0.00 0.07 0.01
N onsite inspections 0.24 0.55 0.13 0.00 0.55 0.09 0.00 0.98 0.00
N offsite inspections 0.15 0.24 0.08 0.00 0.42 0.08 0.00 0.00 0.67
Non-attainment 0.51 1.44 - - 1.47 - - 0.90 -

Demographic

N plants 83.45 184.69 38.59 0.00 201.96 44.43 0.00 0.66 0.13
Share white pop. 0.86 0.87 0.92 0.00 0.77 0.79 0.06 0.00 0.00
Population 0.10 0.23 0.04 0.00 0.34 0.03 0.00 0.01 0.00
Income 22.44 24.27 21.80 0.00 26.16 20.80 0.00 0.00 0.00

Climate

Precipitation 2.96 2.92 3.08 0.00 2.91 2.79 0.13 0.89 0.00
Wind speed 3.50 3.32 3.51 0.00 3.47 3.63 0.00 0.00 0.00
Temperature 56.08 54.15 55.26 0.01 56.63 58.56 0.00 0.00 0.00

Observations 3,014 537 1,364 1,901 319 794 1,113 856 2,158

Notes: This table presents summary statistics of the main variables of interest at the county-level, averaged over 2000 -
2018. Column (1) presents summary stats for all 3,014 counties. The additional columns differentiate between counties
that had a sudden increase in the Nonwhite population share (defined as a 0.5 percentage point increase between two years)
and those that did not, as well as between counties with and without monitors. We report p-values of t-tests in columns
(4), (7), (8), and (9) to examine differences in means between the mentioned categories. Column (4) shows the difference in
means between counties with a ”jump” in the presence of at least one PM2.5 monitor compared to those without. Column
(7) represents the difference in means between counties without a ”jump” for areas with and without at least one PM2.5
monitor. Additionally, column (8) displays the difference in means between ”jump” counties and ”no-jump” counties with
monitors. Finally, column (9) indicates the difference in means between ”jump” and ”no-jump” counties without monitors.
PM2.5 is measured in µgm−3. Above WHO refers to the share of counties for whom the average PM2.5 concentrations is
above the WHO recommended level of 5 µg/m3. The number of inspected plants, as well as the number of on- and offsite
inspections is given in thousands; population is given in million people, income in thousand USD, precipitation in mm/m²,
wind speed in m/s, and temperature in degrees Fahrenheit.

respectively. The second dimension divides the sample according to the existence of at

least one PM2.5 ground-level monitor.

Table 1 further reveals that counties with monitoring stations experience, on average

higher levels of air pollution compared to those without such stations. Moreover, among

counties without monitors, air quality is significantly better in counties where the non-

white population experienced a jump. In contrast, no significant differences are observed

in counties with monitors. Interestingly, the share of inspected plants is higher in counties

that did not experience a jump in the racial composition than in those where no such
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jump occurred, and this result holds true in both counties with and without monitors.

?? provides a graphic illustration confirming that these patterns also hold over time.
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Figure 2 – Share of inspected plants and PM2.5 concentrations.

Notes: This figure plots the average share of inspected plants versus the average PM2.5 levels of each county over 2000-2018.
Panel A exclusively focuses on counties without ground-level PM2.5 monitors, while Panel B considers counties with such
monitors. Within each panel, the data points are divided into two groups: red points represent counties that experienced
a jump in the share of Nonwhite population. In contrast, blue points depict counties without such a jump.

2 further explores the cross-sectional correlation between air pollution concentrations

and the share of inspected plants in a county. Panel A exclusively considers counties with

ground-level PM2.5 monitors, while Panel B is focused on counties without. Furthermore,

each panel distinguishes counties with and without a jump in the racial composition.

Across all plots, a positive correlation is observed between PM2.5 levels and the share of

inspected plants. Moreover, in both panels, the correlation is higher for counties that did

not experience a racial jump, as indicated by the steepness of the slopes.

III. Changes in Racial Composition and Environmental Inspections

A. Identification strategy

This section further explores the relationship between the racial composition of US coun-

ties and the prevalence of environmental auditing. For identification, we exploit within-

county variation in the racial composition as well as the share of inspected plants over

time. Using a county-level yearly panel, we employ a staggered difference-in-differences

approach that compares outcomes in ”treated” counties to those in ”not-yet treated” ones.

We define the treatment as an increase of 0.5 percentage points or more in the share of

the nonwhite population of a county within consecutive years.

Figure 4 depicts the distribution of changes in the share of non-white population

within a county in the year of treatment (Panel A). Counties that never experience such
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Panel C. Share inspections, counties w/ moni-
tors
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Figure 3 – Average PM2.5 concentrations and share of inspected plants over time.

Notes: The figure above presents how PM2.5 (pop. weighted) and the share of inspected plants develop over time. Panels
A and C depict this development for counties with monitors, while panels B and D only consider counties that do not have
ground monitors. In each panel, we, additionally, distinguish between counties that experienced a jump in the Nonwhite
population and those that do not.

a jump are not depicted in the histogram. The figure shows that, among counties that

experienced a jump in the share of non-white population, more than 80% of them had a

jump between 0.5 and 1 percentage points. Panel B depicts the time-varying number of

counties that experience such a jump. We observe an increase in the number of treated

counties over time that progresses smoothly. At the end of the estimation horizon, about

one third of all counties have encountered a rise of 0.5 percentage points or more in the

proportion of non-white population. Furthermore, Figure A-1 in the Appendix illustrates

that counties with jumps are spatially distributed all across the contiguous US.
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Panel A. Change in nonwhite share.
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Figure 4 – The Distribution of Changes in the Share of Nonwhite Population and Number
of Counties, by treatment.

Notes: This figure plots the distribution of changes in the share of non-white population in the year of treatment (Panel
A) and the number of counties by treatment over time (Panel B). The red line in Panel A marks the 0.5 percentage points
threshold used to define the treatment in our main specifications.

Following the approach in Sun and Abraham (2020), we estimate the following differences-

in-differences model with dynamic treatment effects:

Yi,t = Σ−2
k=−18βk × Ti,k + Σ18

k=0βk × Ti,k +X ′i,tΓ + γi + θt + εi,t, (1)

where Yi,t is the outcome variable of interest in county i and year t. In our analysis,

we first estimate the model for yearly PM2.5 concentrations and secondly for a series of

environmental scrutiny outcomes, including the share of inspected plants, the number of

inspected plants, the number of on- and offsite inspections, as well as the designation

of counties in nonattainment. Ti,k is a dummy indicator equal to one for the cohort

of treated observations within k periods relative to the treatment. X ′i,t is a vector of

time and county-varying covariates, such as income and population. Models with PM2.5

concentrations as outcome variables additionally control for wind speed, temperature, and

precipitation. All other models control for population-weighted PM2.5 concentrations. γi

and θi are county and calendar year fixed effects, respectively. εi,t denotes the error term

clustered at the county level.

B. Results

Figure 5 displays the estimated coefficients for the model in Equation 1, where the out-

come variable is either the share of inspected plants (Panel A) in a county or its average

yearly PM2.5 concentrations (Panel B). We find that, in the years following the jump in
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the share of nonwhite population, the share of inspected plants in a county decreases

significantly and remains below the pre-jump level for most of the ten-year period that

follows. The pattern does not appear to be explained by changes in PM2.5 concentrations,

which appear to remain at similar levels or even slightly increase post-jump.
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Figure 5 – Dynamic Effects of a Jump in the share of Nonwhite Population on the Share
of Inspected Plants.

Notes: This figure displays the estimated coefficients of the model in Equation (1). The treatment is defined as a 0.5
percentage point increase in the share of the non-white population. Panels A and B present the outcomes for the share of
inspections and for population-weighted PM2.5 concentrations using all counties in our sample.

To further investigate the observed patterns, we extend the analysis to other environ-

mental scrutiny measures, as well as verify potential heterogeneity across counties with

and without ground-level monitors. Table 2 presents the results of estimating Equation 1,

where, instead of allowing one coefficient for each event time year, we group the event

time dummies into four categories.8 For space considerations, Table 2 displays only the

coefficient corresponding to the five-year period before the jump (grouping event years -6

to -2 and denoted Pre-Jump) and the coefficient corresponding to the average effect at

and five-years after the jump (grouping event years 0 to 5 and denoted Post-Jump). Our

main focus is on the Post-Jump coefficients, estimating the average impact of a jump in

the racial composition. Nevertheless, we are interested in documenting also the Pre-Jump

coefficients in order to ensure the absence of pre-existing trends before the occurrence of

the event.

Panel A displays the estimation results for the whole sample of counties. While PM2.5

concentrations appear not affected by the change in the racial composition, the share of

inspected plants experiences a 1.6 percentage point decrease significant at the 1% level

(p-value<0.01). The effect coincides with a significant increase in the number of offsite

8We estimate one coefficient for all event time years -18 to -7, one coefficient for -6 to -2, one coefficient
for 0 to 5, and one coefficient for 6 to 18.
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Table 2 – Volume of environmental scrutiny and share of the non-white population.

Dependent variable

PM2.5

(Pop. weighted)

Share inspected

plants

N inspected

plants
N onsite

inspections
N offsite

inspections
Nonattainment

designation

(1) (2) (3) (4) (5) (6)

Panel A: All Counties

Pre-Jump -0.051* 0.002 0.190 0.197 -0.413
(0.027) (0.005) (0.231) (0.366) (0.415)

Post-Jump 0.009 -0.016*** 0.423 0.114 3.020***
(0.027) (0.004) (0.448) (0.546) (0.628)

Observations 54,224 54,242 54,242 54,242 54,242
R-Squared 0.89 0.64 0.82 0.79 0.65

Panel B: Counties without monitors

Pre-Jump -0.040 -0.000 0.118 0.213 -0.402
(0.032) (0.006) (0.170) (0.158) (0.263)

Post-Jump 0.074** -0.016*** -0.157 -0.574*** 1.252***
(0.032) (0.005) (0.205) (0.170) (0.429)

Observations 38,816 38,834 38,834 38,834 38,834
R-Squared 0.90 0.63 0.74 0.78 0.56

Panel C: Counties with monitors

Pre-Jump -0.086 0.007 0.592 0.544 -0.561 0.003
(0.055) (0.012) (0.833) (1.494) (1.646) (0.016)

Post-Jump -0.134** -0.018** 0.563 -0.416 6.214*** 0.029**
(0.052) (0.009) (1.475) (1.909) (1.838) (0.011)

Observations 15,408 15,408 15,408 15,408 15,408 15,408
R-Squared 0.89 0.67 0.80 0.77 0.67 0.47

Notes: This table presents estimates of Equation (1) from the main text. Each column corresponds to a different outcome
variable. PM2.5 refers to population-weighted fine particulate matter concentrations. All models include county and year-
fixed effects, as well as log values of population and income as controls. The model in column (1) additionally controls for
wind-speed, temperature, and precipitation. All models in Columns (2)-(6) additionally control for population-weighted
PM2.5 concentrations. Standard errors are clustered at the county level and presented in parentheses. Significance is
denoted as follows: *** p<0.01, ** p<0.05, and * p<0.1.

inspections (p-value<0.01). The pattern appears consistent also when distinguishing be-

tween counties without (Panel B) and with (Panel C) monitors. Namely, in the medium

term, after the jump in the share of the nonwhite population within a county, the share of

inspected plants is significantly reduced, while the number of offsite inspections increases.

Interestingly, these effects coincide with an increase in air pollution concentrations in the

post-jump period in counties without monitors and a decrease in the number of onsite

inspections. In contrast, air pollution concentrations decrease in counties with moni-

tors in the period following the jump, while the probability of receiving nonattainment

designation increases by 3 percentage points.

Robustness Tests. We perform various tests to further probe the robustness of these

results. First, we vary the definition of the treatment, considering various thresholds for

the increase in the share of nonwhite population. Appendix A-4 provides the estimation
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results when the treatment is defined as an increase in the share of nonwhites by 0.75,

and 1 percentage points, respectively. Independent of the treatment definition, the same

pattern emerges: following an increase in the share of the nonwhite population, the share

of inspected plants decreases. The results suggest that, if anything, higher treatment

levels led to more pronounced reductions in inspection shares.

Second, our identification strategy so far defined the treatment as the first time that

a county incurs a jump in the share of non-whites. However, it is possible that the racial

demographic changes occur repeatedly within the same county, i.e. that a county has

more than just one jump. To address this possibility, we allow the treatment definition

to switch on and off. We estimate dynamic treatment effects following the methodology

proposed in De Chaisemartin and d’Haultfoeuille (2020). Appendix Figure A-5 displays

the estimated coefficients and prove the robustness of our main results to this alternative

treatment definition.

IV. Impact of Inspections and Nonattainment Designation on PM2.5

The analysis so far documents that the share of inspected plants in a county tends to

decrease once a county experiences a positive jump in the share of nonwhite population.

The result is surprising and does not appear justified by changes in fine particulate matter

concentrations in the same counties. We put forward two potential mechanisms that could

explain these patterns. On the one hand, recent literature in political science argues

that white neighborhoods often see higher lobbying power (Davidson, 2017; Salvo, 2020).

Following such pronounced political participation, the EPA might be more inclined to

inspect these very regions.9 A different mechanism that could explain EPA’s prioritization

of counties with stable racial demographics could be that inspections are more efficient

in reducing ambient air pollution in these counties compared to those where the racial

composition changes. In other words, the EPA might select which counties to audit more

in order to maximize the return on inspections.

To verify the validity of this hypothesis, we first assess the relationship between the

intensity of environmental auditing in a county and its PM2.5 concentrations. Second, we

investigate whether there is heterogeneity in this relationship across predominantly white

and more racially mixed counties.

9We are currently working on gathering and analysing data to assess whether this mechanism is indeed
relevant.
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We start with a two-way fixed effects model, where current PM2.5 concentrations in a

county are regressed on the current and lagged share of inspected plants:

PM2.5i,t = β1SIi,t + β2SIi,t−1 +X ′i,tΓ + φi + γt + εi,t, (2)

where, PM2.5i,t stands for the level of PM2.5 concentrations (either population-wighted

remote sensed or measured by the ground monitors, where available) in year t and county i.

SIi,t and SIi,t−1 represent the share of inspected plants in the year t and t−1, respectively.

Additionally, we include current and lagged nonattainment designations for counties that

have at least one monitor. X ′i,t is a vector of time-varying control variables, including

temperature, precipitation, wind speed, population count, and average income level. φi

and γt represent county and year-fixed effects, respectively. The standard errors are

clustered at the county level.

To account for the tendency of PM2.5 to disperse across space, we also estimate a

spatial model, whereby we include a spatial lag of the dependent variable on the right-

hand side of the regression equation. Furthermore, we correct for spatial correlation in

the error terms. We rely on an inverse spatial weight matrix, where counties further away

from the county of interest are asigned a lower weight than those closer to it.10

PM2.5i,t = µΨPM2.5j,t + β1SIi,t + β2SIi,t−1 +X ′i,tΓ + φi + γt + (I − ρΨ)−1εi,t, (3)

where Ψ represents the inverse spatial weights matrix. Table 3 presents the estimation

results of Equations (2) and (3).11 We present whole sample results in columns 1 and

2. In columns 3 and 4, we restrict the sample to counties that are predominantly white,

i.e., their average share of the white population across time is of 80% or higher. Columns

5 and 6 show the estimation results for counties where the average share of the white

population is below 80%.

Overall, we find that a higher share of inspected plants in the previous year tents

of be associated with lower air pollution concentrations in the current year. The effects

appear more pronounced in counties without monitors, especially among counties with

a predominantly white population. In counties with monitors, counties designated in

nonattainment reduce their PM2.5 concentrations in the following year, and the impact

10We test the robustness of our results to using two other differently defined weight matrices, namely:
queen and rook contiguity matrices. Additionally, we estimate the models using a placebo weight matrix,
where weights have been randomly generated. Appendix D provides detailed information on the weight
matrices and the estimation results.

11Detailed on the estimated coefficients of the spatially lagged variables are presented in the appendix.
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Table 3 – Environmental scrutiny and fine particulate matter concentrations.

Dependent variable: PM2.5 concentrations

All counties White counties Non-white counties

Standard Spatial Standard Spatial Standard Spatial
(1) (2) (3) (4) (5) (6)

Panel A: All counties

Lag share inspected -0.059 -0.022 -0.087** -0.044** 0.020 -0.092**
(0.041) (0.016) (0.044) (0.018) (0.082) (0.040)

Controls Yes Yes Yes Yes Yes Yes
Observations 51,229 51,238 40,247 40,256 10,982 10,982

Panel B: Counties without monitors

Lag share inspected -0.088** -0.020 -0.122** -0.031* 0.128* 0.025
(0.043) (0.016) (0.048) (0.018) (0.076) (0.038)

Controls Yes Yes Yes Yes Yes Yes
Observations 36,677 36,686 29,333 29,342 7,344 7,344

Panel C1: Counties with monitors

Lag share inspected 0.051 -0.060 0.031 -0.046 -0.269 -0.307***
(0.101) (0.038) (0.105) (0.042) (0.232) (0.117)

Lag nonattainment -0.771*** -0.239*** -0.819*** -0.279*** -0.622*** -0.599***
(0.055) (0.039) (0.068) (0.045) (0.078) (0.085)

Controls Yes Yes Yes Yes Yes Yes
Observations 14,552 14,552 10,914 10,914 3,638 3,638

Panel C2: Counties with monitors (Ground monitor PM2.5)

Lag share inspected -0.094 -0.186*** -0.182 -0.160** -0.018 -0.242
(0.151) (0.067) (0.162) (0.075) (0.316) (0.168)

Lag nonattainment -0.872*** -0.492*** -0.994*** -0.525*** -0.566*** -0.664***
(0.064) (0.070) (0.080) (0.081) (0.103) (0.124)

Controls Yes Yes Yes Yes Yes Yes
Observations 15,408 15,408 11,556 11,556 3,852 3,852

Notes: This table presents estimates of Equations (2) and (3) from the main text. Every two columns correspond to a
different outcome variable (either ground monitored, remotely sensed, or population-weighted PM2.5). We omit reporting
the coefficients of the current share of inspected plants and the current nonattainment designation. All models include
county and year-fixed effects, as well as time-varying controls for temperature, precipitation, wind speed, the logarithm
of population count, and the logarithm of the annual income. The spatial models are estimated using an inverse distance
matrix without a distance cut-off. In the standard models, standard errors are clustered at the county level. Significance
is denoted as follows: *** p<0.01, ** p<0.05, and * p<0.1.

is significant also when distinguishing counties by their racial composition. The results

are robust to estimating either the standard or spatial models. The analysis indicates

no evidence that the environmental scrutiny activity is more effective in predominantly

white counties vis-a-vis the rest.
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V. Conclusion

This paper investigates the effectiveness of the Clean Air Act (CAA) in mitigating en-

vironmental inequalities and examines the role of dynamics in the racial composition of

counties for the application of different scrutiny types. Our study uses a comprehensive

dataset on environmental scrutiny and air pollution exposure, which includes auditing

information from 251,829 plants across the contiguous USA, combined with ground-level

monitor and high-resolution remotely sensed air pollution information.

We find that despite being exposed to higher particulate matter concentrations, coun-

ties are inspected less often when the share of the Nonwhite population in a county

increases. We are able to show that this discrepancy cannot be explained by differences

in the efficiency of environmental audits, or by decreasing pollution levels after a change

in the racial composition. We see that the decrease in inspection shares is especially

prevalent in counties that do not have any ground-level monitors for PM2.5. Considering

that these are the very counties that experience continuous growth in pollution levels un-

derlines the severity that this development entails. In counties with pollution monitoring

systems, however, we observe only a short decrease in inspection rates and no ongoing

increase in pollution levels, giving less reason for worry.

Furthermore, our findings indicate that the nonattainment designation plays a vital

part not only in the reduction of PM2.5 but also in closing the racial pollution gap. These

findings overlap with the key results of Currie et al. (2023). However, we argue that

the disproportionate distribution of inspections away from Nonwhite counties hinders an

effective closing in the future. Also, we claim that the impact of the EPA’s environ-

mental scrutiny might be overestimated when only accounting for ground-level data and

disregarding spatial spillover effects of pollution and inspections.

We conclude that policymakers should pursue targeted and efficient regulatory policies

based on accurate, all-encompassing measurements while ensuring that the implementa-

tion of these policies is impartial and equitable. Specifically, policymakers should be

cautious in overregulating areas that are in compliance with air quality standards while

under-regulating areas that appear to be in violation. Using satellite measurements to

improve the accuracy of targeting pollution sources can be a valuable step in this direction.

Moreover, our study underlines the vital role that ground monitors play in tackling

racial air pollution disparities. Not only do our results suggest that possible discriminatory

issues might be restrained by the data objectivity of these instruments, but they further

allow the continuous observation of pollution levels in an area and facilitate the possibility
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to take impacting legal action against areas breaching legal pollution levels, in the form

of nonattainment designations.

It is important to continue to investigate the root causes of these disparities and to

address them through policy and regulatory changes to ensure that all communities have

equal access to clean and healthy environments. In future instances of this ongoing study,

we want to identify the role of lobbying power in the process of inspection place choices.
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Appendix

A. Expanded Summary Statistics

Table A-1 – Extended Summary statistics.

All White Non-white White - Non-white

W/

monitor

W/o

monitor
P-val.
diff.

W/

monitor

W/o

monitor
P-val.
diff.

P-val.
diff. w/

monitors

P-val.
diff. w/o

monitors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PM2.5

Ground monitors 9.79 9.50 9.57 0.04 10.70 10.68 0.60 0.00 0.00
Remote sensed 7.93 7.45 7.62 0.00 9.49 9.06 0.00 0.00 0.00
Population weighted 8.54 8.59 8.11 0.00 10.18 9.36 0.00 0.00 0.00
Scrutiny
Nr monitors 0.32 0.99 - - 1.58 - 0.00 -
Inspection share 0.20 0.21 0.18 0.00 0.22 0.22 0.09 0.08 0.00
Nr inspected plants 10.17 17.60 5.07 0.00 37.53 5.94 0.00 0.00 0.00
Nr inspections 20.15 35.83 9.69 0.00 72.99 12.49 0.00 0.00 0.00
Nr onsite inspections 12.51 23.11 5.78 0.00 46.60 6.73 0.00 0.00 0.00
Nr offsite inspections 7.65 12.72 3.91 0.00 26.39 5.76 0.00 0.00 0.00
Non-attainment - 0.07 - - 0.09 - - 0.01 -
HPV share 0.02 0.03 0.02 0.00 0.02 0.01 0.00 0.00 0.00
Nr HPV plants 0.85 1.53 0.40 0.00 3.41 0.35 0.00 0.00 0.00
FRV share 0.01 0.02 0.01 0.74 0.01 0.01 0.41 0.40 0.08
Nr FRV plants 0.78 1.65 0.39 0.00 2.27 0.27 0.00 0.00 0.00
Avg fines 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.03 0.18
Demographic
Nr plants 83.45 159.94 40.23 0.00 284.69 42.76 0.00 0.00 0.02
Share white pop. 0.86 0.91 0.94 0.00 0.63 0.60 0.00 0.00 0.00
Share afro-american pop. 0.09 0.04 0.03 0.00 0.28 0.34 0.00 0.00 0.00
Share hispanic pop. 0.08 0.10 0.08 0.00 0.09 0.04 0.00 0.00 0.00
Share asian pop. 0.01 0.02 0.01 0.00 0.04 0.01 0.00 0.00 0.08
Population 0.10 0.21 0.03 0.00 0.47 0.03 0.00 0.00 0.00
Income 22.43 25.07 22.09 0.00 24.68 18.78 0.00 0.00 0.00
Climate
Precipitation 2.96 2.72 2.80 0.08 3.37 3.60 0.00 0.00 0.00
Wind speed 3.50 3.42 3.67 0.00 3.26 3.11 0.00 0.00 0.00
Temperature 56.08 52.65 54.98 0.00 60.97 62.04 0.02 0.00 0.00

Observations 57,266 12,198 32,794 44,992 4,066 8,208 12,274 16,264 41,002

Notes: This table presents county-level summary statistics for different sub-samples spanning from 2000 - 2018. We
define ”White counties” as counties with more than 80% of the population identifying as white. Non-white is the inverse,
respectively. Columns (4), (7), (8), and (9) report p-values of t-test statistics for the difference in means. Column (4)
refers to the difference in means between white counties that have at least one PM2.5 monitor versus white counties that
have no monitors. Column (7) refers to the difference in means between non-white counties that have at least one PM2.5
monitor versus non-white counties that have no monitors. Further, column (8) presents the difference in means between
white counties with monitors versus non-white counties with monitors. Finally, column (9) refers to the difference in means
between white counties without monitors against non-white counties without monitors.
PM2.5 is measured in µgm−3, population is given in million people, income in thousand USD, precipitation in mm/m², wind
speed in m/s, and temperature in °F. Population-weighted PM2.5 is not available for 2018 due to missing high-resolution
population density data, leading to a total of 54,252 observations for this particular variable.
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B. Changes in Racial Demographics

Jump
No Jump

Counties with...

Figure A-1 – Spatial distribution of counties with and without jumps in the share of
non-white population.

Notes: This figure illustrates the spatial distribution of all US counties in our sample. Counties that have experienced an
increase of at least 0.5 percentage points in the share of non-white population in any year during 2000-2018 are marked
with gray. All other counties are colored white.
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Figure A-2 – The Distribution of Changes in the Share of Nonwhite Population.

Notes: Panels A and B of the figure display demographic changes over our sample period from 2000 to 2018. More precisely,
both histograms indicate the difference in the share of the Nonwhite population between 2000 and 2018. Hence, positive
numbers highlight an increase in the Nonwhite population, while negative numbers indicate a decrease.
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C. Event Study Outcomes

1. Event Study by Quantile
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Figure A-3 – Quantile Event Study.

Notes: The figure above displays the outcome of the dynamic event study as described in equation 1 of the main text for
the share of inspected plants and the absolute number of inspected plants. Each panel A-D presents the results of the event
study for a subsample of the data divided by quantiles for the number of plants in each county. More precisely, Panel A
presents the results for counties with 0-25 plants in the county. Panel B for 26-51 plants, panel C for 52-69 plants, and
panel D for 70 or more plants.
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2. Event Study for Different Treatment Thresholds
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Figure A-4 – Event Study for different Thresholds.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the non-white population. Panels A1 and A2 present the outcomes for the share
of inspections and for remote sensed PM2.5 for the whole sample. Panels B1 and B2 for the share of inspections and for
remote sensed PM2.5 for counties without monitors. Finally panels C1 and C2 show the results for the share of inspections
and for remote sensed PM2.5 for counties with monitors.
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3. Event Study with In- and Out-Switching
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Figure A-5 – Event Study Allowing for On and Off-Switching.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the non-white population. Here, counties are allowed tow switch back from treated
to not-treated, as described in De Chaisemartin and d’Haultfoeuille (2020). Panels A1 and A2 present the outcomes for
the share of inspections and for remote sensed PM2.5 for the whole sample. Panels B1 and B2 for the share of inspections
and for remote sensed PM2.5 for counties without monitors. Finally panels C1 and C2 show the results for the share of
inspections and for remote sensed PM2.5 for counties with monitors.
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4. Event Study for Off- and Onsite Inspections
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Figure A-6 – Event Study for the Off- and Onsite Inspections.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the non-white population. Panels A1 and A2 present the outcomes for the number
of on- and offsite inspections for the whole sample. Panels B1 and B2 for the number of on- and offsite inspections for
counties without monitors. Finally, panels C1 and C2 show the results for the number of on- and offsite inspections for
counties with monitors. Note that one plant can have either multiple onsite, or offsite inspections per year, or even a mix
of both.
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5. OLS Regression Outcomes for Afro-American, Asian, and Hispanics

Table A-2 – Volume of environmental scrutiny and share of ethnic minorities.

Dependent variable: Environmental scrutiny type

Inspection Share HPV Share FRV Share Avg. Investments Non-Attainment
(1) (2) (3) (4) (5)

Panel A: All Counties

Share afro-american population -0.047 0.038 -0.016 0.002
(0.088) (0.024) (0.031) (0.016)

Share hispanic population 0.057 -0.088 -0.227*** -0.034
(0.098) (0.061) (0.058) (0.028)

Share asian population -0.850*** -0.018 0.094 -0.023
(0.217) (0.078) (0.083) (0.054)

Dep. Var. Mean 0.20 0.02 0.01 0.01
Observations 57,256 57,256 57,256 57,256
Controls Yes Yes Yes Yes

Panel B: Counties without monitors

Share afro-american population 0.020 0.047 -0.013 -0.005
(0.103) (0.030) (0.037) (0.019)

Share hispanic population -0.051 -0.199*** -0.329*** -0.106***
(0.096) (0.071) (0.069) (0.028)

Share asian population -1.023*** 0.082 -0.028 0.077
(0.331) (0.111) (0.102) (0.054)

Dep. Var. Mean 0.19 0.02 0.01 0.01
Observations 45,611 45,611 45,611 45,611
Controls Yes Yes Yes Yes

Panel C: Counties with monitors

Share afro-american population -0.275 0.028 -0.135** -0.003 -0.234
(0.193) (0.055) (0.064) (0.038) (0.397)

Share hispanic population 0.244 0.414*** 0.206** 0.256*** 1.635***
(0.260) (0.120) (0.105) (0.083) (0.557)

Share asian population -0.290 -0.177 -0.069 -0.235** 2.367***
(0.345) (0.122) (0.113) (0.100) (0.836)

Dep. Var. Mean 0.22 0.03 0.01 0.02 0.10
Observations 11,594 11,594 11,594 11,594 11,594
Controls Yes Yes Yes Yes Yes

Notes: This table presents estimates of Equation ?? from the main text. Each column corresponds to a different outcome
variable. All models include county and year fixed effects, PM2.5 refers to remote sensed fine particulate matter concentra-
tions. For population and income, log values are included in the estimations. Standard errors are clustered at the county
level and presented in parentheses. Significance is denoted as follows: *** p<0.01, ** p<0.05, and * p<0.1.
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6. Event Study for Afro-American, Asian, and Hispanics

Afro-American Population
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Figure A-7 – Afro-American Treatment Event Study.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the Afro-American population. Panels A1 and A2 present the outcomes for the
share of inspections and for remote sensed PM2.5 for the whole sample. Panels B1 and B2 for the share of inspections
and for remote sensed PM2.5 for counties without monitors. Finally panels C1 and C2 show the results for the share of
inspections and for remote sensed PM2.5 for counties with monitors.
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Asian Population
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Figure A-8 – Asian Treatment Event Study.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the Asian population. Panels A1 and A2 present the outcomes for the share of
inspections and for remote sensed PM2.5 for the whole sample. Panels B1 and B2 for the share of inspections and for
remote sensed PM2.5 for counties without monitors. Finally panels C1 and C2 show the results for the share of inspections
and for remote sensed PM2.5 for counties with monitors.
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Hispanic Population
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Figure A-9 – Hispanic Treatment Event Study.

Notes: The figure above shows the results of equation 1 for different subsamples. The treatment is defined as a 0.5
percentage point increase in the share of the Hispanic population. Panels A1 and A2 present the outcomes for the share
of inspections and for remote sensed PM2.5 for the whole sample. Panels B1 and B2 for the share of inspections and for
remote sensed PM2.5 for counties without monitors. Finally panels C1 and C2 show the results for the share of inspections
and for remote sensed PM2.5 for counties with monitors.
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D. Weight Matrix Choice

In general, the spatial weights matrix can take a variety of different forms. Choosing the
correct spatial weights matrix is vital to the validity of the outcomes of the spatial models.
While rook and queen contiguity weights12 are often used in a pollution context; both
matrices do not reflect the spatial behavior expected in the data, as solely neighboring
counties would have a spatial impact on the PM2.5 level in the county of interest. Hence,
it seems more appropriate that counties further away have a less pronounced influence on
the ”base” cell. The standard weight matrix is given as follows:

W =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

...
. . .

...
wn1 wn2 . . . wnn

 , with wii = 0 (4)

In this paper, the elements of the weights matrix will be defined as the inverse distance
d between two cells i and j:

wij =

{
d−αij , if dij 6 x

0 , if dij > x
(5)

As equation 5 shows, the weights matrix contains two additional parameters next to
the distance d. x is included as a threshold that determines the distance to which cells
are considered having spatial influences on each other. Ascertain the adequate value of x
remains difficult and strongly depends on the theoretical assumptions made beforehand.
Considering that PM2.5 can stay in the atmosphere over extended periods of time and
travels up to 2000 miles in a few days (Wang et al., 2017), setting x = ∞ seems well
justified for the purpose of this study. With regard to the theoretical spatial dependencies
of NTL and health, this specification of x seems acceptable, too. However, to test the
robustness of the spatial analysis, additional weight matrices are constructed for x = 100,
250, 500, 750, 1000, 1500, and 2000 miles, and the impact on the spatial autocorrelation
statistics is investigated.

Additional to the threshold parameter x, the power parameter α (∈ [1;∞)) is included
in the generation process of the spatial weights matrix. It can be interpreted as the speed
at which the spatial dependencies decline. Most commonly, α is chosen to be 1. However,
to check again for the robustness of that assumption, additional weight matrices with α

12Rook and queen contiguity matrices are named after the chess pieces and reflect spatial dependency
based on their respective moves. Hence, rook contiguity defines neighbors on joint edges, and the queen
contiguity on common edges and corners.
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ranging from 2 to 10 will be constructed.13 After the construction, all matrices above are
additionally minmax-normalised.14

Finally, we also constructed a placebo weight matrix, to check that our results are
indeed driven by spatial dependencies and no underlying structural issues. For this matrix
we draw a random weight out of a uniform distribution wij ∼ U [0, 1], keeping wii = 0.

13No cut-off will be introduced when looking into different variations of α, as well as α is kept constant
to 1 when changing x.

14That is, each element is divided by the minimum of the largest row sum and column sum of the matrix.
By doing so, the symmetry of the matrix is contained. Another more frequently used normalization
approach is row normalization. Importantly, this technique does not keep the symmetry of the matrix
and can lead to “a misspecified model,” according to Kelejian and Prucha (2010, p. 56).
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